China wholesaler Portable Vacuum Pump for Double Cow Milking Machine Prices with Best Sales

Product Description

                        Portable Vacuum Pump for Double Cow Milking Machine Prices 

Our Vanmay Portable Cow Milking Machine is important equipment for today’s dairy industry, which is widely used in small, medium or large farms for milking cows, sheeps, goats and ect… Also family using is more and more common. Our Cow Milking machine consists of vacuum pump, milk pulsator, electric motor, milk bucket etc. And the electric motor can be instead of diesel engine and gasoline engine.

1. Wide Application Contact Us

2. Milking Machine Details Contact Us

 

Cow Milking Machine Features:

1. Our CHINAMFG Cow Milking Machine with mobile wheels, which is flexible and convenient for milking;
2. With simple and easy operation and maintenance;
3. Low noise and high milking production;
4. Saving more labors and improving effectiveness.
 

3. Technical Specifications Contact Us

 

Item Single barrel milking machine Double barrel milking machine
Model HL-JN01 HL-JN02
Matched Electric Motor Power 1100W
Matched Diesel Engine Power 4HP
Motor Speed 1440 rpm
Production 10-12 cows/ hour; 20-30 sheep / hour  20-24 cows / hour; 40-60 sheep / hour
Milking Time 5-6 minutes per cow   2-3 min per sheep
Stainless Steel Milking Bucket 25L 25L*2
Vacuum 50kpa
Pulse Frequency  60:40
Vacuum Pump 250L / min
Weight 90 kg 100 kg
Dimensions 800 * 750 * 1000 mm 800*830*1000 mm
Package Thickened Wooden Case

 

4. Factory Show Contact Us

Our ZheJiang CHINAMFG Industry Co.,Ltd, which is located in HangZhou city, ZheJiang province, China has built a good and high reputation on building the most cost-effective machinery equipment in China. CHINAMFG is recognized globally as an expert in providing industry leading process design, engineering and manufacturing to a variety of industry machines. Whatever you require, our Vanmay’s professional team can design and manufacture your machines for your application.

Our Main Products: Cow Milking Machine ,Corn Harvester Machine, Chaff Cutter Machine, Grass Chopper Machine for Animals Feed, Silage Baler & Wrapper Machine, Mixer Machine for Animals Feed, Pellet Machine for Animals Feed, Animals Feed Grinder Machine, Rice Mill, Paddy/Wheat Harvester, and etc…

Our Goal: Providing our clients the best solution, quality, price, and after-sales service.
 

From initial feasibility report and testing, to engineering, manufacturing, and after-sales services, we bring our great passion for quality and service into everything we do. Sincerely do hope that we can cooperate with you to maximize the mutual benefits of all parties involved, and foward to a beautiful and brightful future together.
 

5. Customers’ Visiting Contact Us

6. Package & Shipping Contact Us

7. FAQ Contact Us

Q1: What is the MOQ for your Cow Milking Machine?
A: Our MOQ is 1 set. And any order quantities are highly appreciated.

Q2: Can I get a free sample of your Cow Milking Machine?
A: Yes, surely, we would like to provide the sample for you. But, we are afraid that you will pay for the sample and delivery cost.

Q3: What is your guarantee period for your Cow Milking Machine?
A: Our Cow Milking Machine guarantee period is 12 months, and we also provide 24 hours on-line service if any problems happen.

Q4: Do you accept OEM & ODM?
A: Yes, OEM & ODM projects are available. You are warmly weclome to have your own color, logo, company name, contacts and any design on the Cow Milking Machine. Even we are willing to design the color, logo, packages for you.

Q5: Can I test your Cow Milking Machine with the raw material when visiting your factory?
A: Yes, surely, any testing our Cow Milking Machine with the raw material is highly appreciated.

 

8. Related Products Contact Us

        9ZP-4.5 Chaff Cutter               3 Rows Corn Harvester                     Corn Thresher                   Silage Baler and Wrapper

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Vacuum Pump Milking Machine
Application: Cow
Power Source: Electric
Certification: ISO9001:2008
Condition: New
Matched Electric Motor Power: 1100W
Samples:
US$ 456/Set
1 Set(Min.Order)

|

Customization:
Available

|

vacuum pump

What Is the Impact of Altitude on Vacuum Pump Performance?

The performance of vacuum pumps can be influenced by the altitude at which they are operated. Here’s a detailed explanation:

Altitude refers to the elevation or height above sea level. As the altitude increases, the atmospheric pressure decreases. This decrease in atmospheric pressure can have several effects on the performance of vacuum pumps:

1. Reduced Suction Capacity: Vacuum pumps rely on the pressure differential between the suction side and the discharge side to create a vacuum. At higher altitudes, where the atmospheric pressure is lower, the pressure differential available for the pump to work against is reduced. This can result in a decrease in the suction capacity of the vacuum pump, meaning it may not be able to achieve the same level of vacuum as it would at lower altitudes.

2. Lower Ultimate Vacuum Level: The ultimate vacuum level, which represents the lowest pressure that a vacuum pump can achieve, is also affected by altitude. As the atmospheric pressure decreases with increasing altitude, the ultimate vacuum level that can be attained by a vacuum pump is limited. The pump may struggle to reach the same level of vacuum as it would at sea level or lower altitudes.

3. Pumping Speed: Pumping speed is a measure of how quickly a vacuum pump can remove gases from a system. At higher altitudes, the reduced atmospheric pressure can lead to a decrease in pumping speed. This means that the vacuum pump may take longer to evacuate a chamber or system to the desired vacuum level.

4. Increased Power Consumption: To compensate for the decreased pressure differential and achieve the desired vacuum level, a vacuum pump operating at higher altitudes may require higher power consumption. The pump needs to work harder to overcome the lower atmospheric pressure and maintain the necessary suction capacity. This increased power consumption can impact energy efficiency and operating costs.

5. Efficiency and Performance Variations: Different types of vacuum pumps may exhibit varying degrees of sensitivity to altitude. Oil-sealed rotary vane pumps, for example, may experience more significant performance variations compared to dry pumps or other pump technologies. The design and operating principles of the vacuum pump can influence its ability to maintain performance at higher altitudes.

It’s important to note that vacuum pump manufacturers typically provide specifications and performance curves for their pumps based on standardized conditions, often at or near sea level. When operating a vacuum pump at higher altitudes, it is advisable to consult the manufacturer’s guidelines and consider any altitude-related limitations or adjustments that may be necessary.

In summary, the altitude at which a vacuum pump operates can have an impact on its performance. The reduced atmospheric pressure at higher altitudes can result in decreased suction capacity, lower ultimate vacuum levels, reduced pumping speed, and potentially increased power consumption. Understanding these effects is crucial for selecting and operating vacuum pumps effectively in different altitude environments.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China wholesaler Portable Vacuum Pump for Double Cow Milking Machine Prices   with Best Sales China wholesaler Portable Vacuum Pump for Double Cow Milking Machine Prices   with Best Sales
editor by CX 2024-02-11

Recent Posts