China wholesaler 11 Kw Zjp-1200 Roots Vacuum Pharmaceutical Pump vacuum pump for ac

Product Description

 

Working principle

Roots vacuum pump, also known as mechanical booster pump, is a rotary positive displacement vacuum pump. The schematic structure of the Roots vacuum pump is shown in Figure on the left. There are 2 figure-8 rotors in the pump chamber, which are installed on a pair of shafts in parallel, and are driven by a pair of synchronous gear. The rotor and the rotor, the rotors and the pump chamber maintain a certain gap and do not contact each other, so the friction loss during operation is very small, the friction power consumption is extremely small, and high-speed operation can be achieved.

Figure below shows the internal structure of the Roots vacuum pump. The 2 rotors of the pump are supported in the rolling bearings on the end covers on both sides of the pump chamber, and rely on a pair of adjustable synchronous gears to keep the 2 rotors rotating at high speed. A certain mutual position, and the end face gap between the rotor and the end cover is guaranteed by the special structure of the fixed end (closer to the motor side), so that the pump can only expand to 1 end of the gearbox due to heat during operation.
 

The 4 sets of PTFE piston ring seals in the end caps on both sides can prevent the lubricating oil in the oil tanks on both sides from entering the pump chamber, and the balanced mechanical seal at the outlet shaft can prevent the atmosphere from leaking into the pump chamber.
The cooling method of the pump is usually air cooling. If the pump is used for working in the high pressure range, it is recommended to select a pump with a water cooling structure. The power of the motor is transmitted to the driving shaft through the coupling, and then the driven shaft is driven to rotate by the driving shaft through the synchronous gear. ZJ series Roots vacuum pumps are of horizontal structure, and the pump is directly connected with the motor by means of a coupling. But the pump with special requirements can adopt the V-belt drive structure.
 

ZJP type Roots vacuum pump with bypass valve is a derivative product of ZJ type Roots vacuum pump. The pumping principle is the same as that of ZJ type pump. It also uses a pair of 8-shaped rotors to maintain a certain gap in the pump casing. It rotates to generate suction and exhaust. The difference is that the inlet and exhaust ports of the ZJP type Roots vacuum pump with bypass valve are connected, and a gravity valve is installed vertically on the channel of the 2 (see Figure on the left). When the force on the valve caused by the pressure difference between the intake port and the exhaust port exceeds the weight of the valve itself, it will automatically open. This value of pressure difference which cause the valve to open is the highest differential pressure at which the pump can operate reliably. Therefore, this valve is actually an overload automatic protection valve, and it is also the biggest advantage of ZJP type Roots vacuum pump. Theoretically, the ZJP Roots pump can be started synchronously with the backing pump under atmospheric pressure to pump the system. If the system volume is large, the bypass valve of the ZJP Roots pump is open for a long time, and the pump’s effective pumping speed is small, so it is not economical to start the ZJP type Roots pump at atmospheric pressure for large systems. It is recommended to start the ZJP Roots vacuum pump when the backing pump reaches a certain pressure.

The advantage of the Roots vacuum pump is that it has a higher pumping speed at a lower inlet pressure, but it cannot be used alone. There must be a backing vacuum pump in series, and the pressure in the system is pumped by the backing vacuum pump to an allowable starting pressure of the Roots vacuum pump before it is started(See figure on the left). In general, the Roots vacuum pump is not allowed to work under high pressure difference, otherwise it will be overloaded, overheated and damaged, so the backing vacuum pump must be selected reasonably, and the necessary protective equipment must be installed.
The backing vacuum pump is generally an oil-sealed mechanical pump, but if the ultimate pressure requirement is not high, other forms of rough vacuum pump can be used as the backing pump, especially when the gas containing a large amount of water vapor is extracted, the dry screw vacuum pump is recommended as the backing pump.
 

 

Product Parameters

Model Pumping speed (L/S) Ultimate pressure (Pa) Max. pressure difference (Pa) Motor speed (rpm) Motor Power (kw) Size(mm) Weight (kg)
Inlet Outlet
ZJ-30 30 6xl0-2 8000 2770 0.75 50 40 66
ZJP-30 5xl0-2 75
ZJ-70 70 6xl0-2 6000 2780 1.5 80 50 87
ZJP-70 5xl0-2 100
ZJ-150 150 6xl0-2 6000 2900 3 100 100 198
ZJP-150 5xl0-2 215
ZJ-300 300 6xl0-2 5000 1450 4 150 150 490
ZJP-300 5xl0-2 480
ZJ-600 600 6xl0-2 4000 2900 5.5 150 150 490
ZJP-600 5xl0-2 503
ZJ-1200 1200 6xl0-2 3000 1450 11 300 300 1550
ZJP-1200 5xl0-2 1580
ZJ-2500 2500 5xl0-2 3000 2900 18.5 300 300 1620

 

Remark:
1. The pumping speed refers to the maximum pumping speed measured when the inlet pressure of the Roots vacuum pump is in the range of 67 Pa ~ 2.67 Pa under the condition that the recommended backing pump is used.
2. The ultimate pressure refers to the stable minimum air pressure measured at the inlet of the pump with a vacuum gauge after fully operation without any additional container, the pump port is closed and no intake air is provided under the condition that the recommended backing pump is used.
3. The performances in the above table are obtained under the condition that the recommended backing pump is used. Users can choose different backing vacuum pumps according to different situations, but their main performance data will vary.
 

Pressure diagram

 

 

Dimension

 

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

You may like

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Nominal Pumping Speed(50Hz): 1200 L/S
Ultimate Pressure: 0.05 PA

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China wholesaler 11 Kw Zjp-1200 Roots Vacuum Pharmaceutical Pump   vacuum pump for ac	China wholesaler 11 Kw Zjp-1200 Roots Vacuum Pharmaceutical Pump   vacuum pump for ac
editor by Dream 2024-05-15

Recent Posts