China best Mini Pneumatic Diaphragm Pump Vacuum PP for Water Oil Lotion 1/4 Inch with Best Sales

Product Description

EASY MAINTENANCE
Low internal volume reduces waste and makes clean-up easy
Stainless steel bolts resist corrosion and provide positive positioning for easy reassembly
 
UNIQUE, PATENTED AIR VALVE
Three-way pilot valve for no-stick operation
All parts are replaceable without opening wet body parts
No air-line lubrication required
PRECISION-FITTED PARTS
Long-wearing End Bearings assure positive rod alignment and are easy to replace
 
PROTECTIVE EXHAUST PORT
Common port for all exhaust prevents vapors in room from attacking air motor seals
Easily submerges for sump or disposal operations sitting idle
RUGGED EXTERIOR CONSTRUCTION
Construction resists corrosion, prevents leakage and ensures clean fluid changes
Aluminum center sections are epoxy coated

FLUID COMPATIBILITY
Housings available in aluminum, stainless steel, ductile iron, polypropylene, groundable acetal or Kynar
 
POSITIVE SEAL DESIGN
Diaphragm firmly locked in place
Formed bead acts as a positive fluid seal
One thru-hole
HEAVY DUTY DIAPHRAGM PLATES
Positive grip plates virtually eliminate leakage and pull-out,
preventing costly downtime
LONG LASTING ROD DESIGN
300 Series stainless steel rod designed for long life and corrosion resistance – even in wet air
 
EASY ALIGNMENT
Bolted, self-aligning air and fluid sections
CHOICE OF ELASTOMERS
Wide range of seat and ball options ensure fluid compatibility and positive seal for maximum efficiency, long life and better suction lift

 

Max working pressure: 100psi(0.7Mpa ,7bar)
Max flow rate: 4.5gpm(17lpm)
Max reciprocating speed: dry running 320cpm    wet running 250cpm
Max suction height: 3m
Max permitted grain: 0.5mm
Max air consumption: 9.0scfm(0.252m³/min)
Air inlet size: 1/4in.npt(f)1/4in.bsp(f)
Air outlet size: 1/4in.npt(f)1/4in.bsp(f)
Fluid inlet size: 1/4in.npt(f)1/4in.bsp(f)
Fluid outlet size: 1/4in.npt(f)1/4in.bsp(f)
Weight: acetal pump: 1.1kg

Packaging & Shipping

Our Company

RUDI pump (ZheJiang Rudi Fluid Conveyor Co., Ltd. ) is a professional manufacturer of air operated diaphragm pump, with over 20-year manufacturing experience in this field. The company has 2 production bases, 3 branch offices, and approx. 120 employees in total, among which there are more than 30 engineers. 

Our pumps have achieved more than 30 patents, CE, ISO9001, SGS certificates. Thanks to the reliable quality, we have won big appraise from our clients all these years. 

The air operated diaphragm pumps manufactured by RUDI use compressed air as power source, and it is the most advanced type of diaphragm pumps in market for the moment. It adopts three-way air pilot valve to achieve real no dead stop and faster reversing. Compared with other traditional domestic pumps, it has larger flow rate, more stable operation, and smaller pulsation. It is widely applied in waste water treatment, chemical industry, petrochemical industry, painting, ceramics, environmental protection, printing and dyeing, etc. to deal with all kinds of corrosive, volatile, flammable, poisonous fluids with particles and high viscosity. 

We have the following materials available, and our engineers will select the most suitable and economical material for you according to your specific working conditions. 

Wetted parts material: PP, PVDF, Acetal, Aluminum alloy, Ductile iron, stainless steel, etc. 

Diaphragm material: PTFE, Santoprene, Viton, Hytrel, Buna-N, etc. 

Available inlet/outlet size: 1/4″, 3/8″, 1/2″, 3/4″, 1″, 1-1/2″, 2″, 3″

Connection type: 
-Threaded connection: Plastic pumps from 1/4″ to 1-1/2″, and all metal pumps. 
-Fanged connection: Plastic pumps from 1/2″ to 3″.

Our Servies
 

*All of the enquiry will be replied within 24 working hours

*Professional pump producer, with design team.

*All of the goods are packed with standard export carton with foam inside & wooden case (non-fumigation)

*Support OEM or ODM

*Fast after-service
FAQ

Q1: Are you a factory or a trading company?

A: Factory

Q2: What’re your payments?

A: T/T, Western Union, L/C etc

Q3: What about package?

A: Carton with foam & wooden case

Q4: How about the delivery time?

A: Depend on quantity

Q5: How about the MOQ?

A: Usually, it is 10 pcs for each model

Q6: How about the warranty?

 

A: 1 year (except for wearing parts)

Warranty: One Year (Except for Wearing Parts)
Material: Plastic
Power: Pneumatic
Valve Body Type: Diaphragm
Function: Fluid Transfer
Diaphragm Material: Viton
Customization:
Available

|

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

How Do Vacuum Pumps Affect the Performance of Vacuum Chambers?

When it comes to the performance of vacuum chambers, vacuum pumps play a critical role. Here’s a detailed explanation:

Vacuum chambers are enclosed spaces designed to create and maintain a low-pressure environment. They are used in various industries and scientific applications, such as manufacturing, research, and material processing. Vacuum pumps are used to evacuate air and other gases from the chamber, creating a vacuum or low-pressure condition. The performance of vacuum chambers is directly influenced by the characteristics and operation of the vacuum pumps used.

Here are some key ways in which vacuum pumps affect the performance of vacuum chambers:

1. Achieving and Maintaining Vacuum Levels: The primary function of vacuum pumps is to create and maintain the desired vacuum level within the chamber. Vacuum pumps remove air and other gases, reducing the pressure inside the chamber. The efficiency and capacity of the vacuum pump determine how quickly the desired vacuum level is achieved and how well it is maintained. High-performance vacuum pumps can rapidly evacuate the chamber and maintain the desired vacuum level even when there are gas leaks or continuous gas production within the chamber.

2. Pumping Speed: The pumping speed of a vacuum pump refers to the volume of gas it can remove from the chamber per unit of time. The pumping speed affects the rate at which the chamber can be evacuated and the time required to achieve the desired vacuum level. A higher pumping speed allows for faster evacuation and shorter cycle times, improving the overall efficiency of the vacuum chamber.

3. Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that can be achieved in the chamber. It depends on the design and performance of the vacuum pump. Higher-quality vacuum pumps can achieve lower ultimate vacuum levels, which are important for applications requiring higher levels of vacuum or for processes that are sensitive to residual gases.

4. Leak Detection and Gas Removal: Vacuum pumps can also assist in leak detection and gas removal within the chamber. By continuously evacuating the chamber, any leaks or gas ingress can be identified and addressed promptly. This ensures that the chamber maintains the desired vacuum level and minimizes the presence of contaminants or unwanted gases.

5. Contamination Control: Some vacuum pumps, such as oil-sealed pumps, use lubricating fluids that can introduce contaminants into the chamber. These contaminants may be undesirable for certain applications, such as semiconductor manufacturing or research. Therefore, the choice of vacuum pump and its potential for introducing contaminants should be considered to maintain the required cleanliness and purity of the vacuum chamber.

6. Noise and Vibrations: Vacuum pumps can generate noise and vibrations during operation, which can impact the performance and usability of the vacuum chamber. Excessive noise or vibrations can interfere with delicate experiments, affect the accuracy of measurements, or cause mechanical stress on the chamber components. Selecting vacuum pumps with low noise and vibration levels is important for maintaining optimal chamber performance.

It’s important to note that the specific requirements and performance factors of a vacuum chamber can vary depending on the application. Different types of vacuum pumps, such as rotary vane pumps, dry pumps, or turbomolecular pumps, offer varying capabilities and features that cater to specific needs. The choice of vacuum pump should consider factors such as the desired vacuum level, pumping speed, ultimate vacuum, contamination control, noise and vibration levels, and compatibility with the chamber materials and gases used.

In summary, vacuum pumps have a significant impact on the performance of vacuum chambers. They enable the creation and maintenance of the desired vacuum level, affect the pumping speed and ultimate vacuum achieved, assist in leak detection and gas removal, and influence contamination control. Careful consideration of the vacuum pump selection ensures optimal chamber performance for various applications.

vacuum pump

Can Vacuum Pumps Be Used in the Medical Field?

Yes, vacuum pumps have a wide range of applications in the medical field. Here’s a detailed explanation:

Vacuum pumps play a crucial role in various medical applications, providing suction or creating controlled vacuum environments. Here are some key areas where vacuum pumps are used in the medical field:

1. Negative Pressure Wound Therapy (NPWT):

Vacuum pumps are extensively utilized in negative pressure wound therapy, a technique used to promote wound healing. In NPWT, a vacuum pump creates a controlled low-pressure environment within a wound dressing, facilitating the removal of excess fluid, promoting blood flow, and accelerating the healing process.

2. Surgical Suction:

Vacuum pumps are an integral part of surgical suction systems. They provide the necessary suction force to remove fluids, gases, or debris from the surgical site during procedures. Surgical suction helps maintain a clear field of view for surgeons, enhances tissue visualization, and contributes to a sterile operating environment.

3. Anesthesia:

In anesthesia machines, vacuum pumps are used to create suction for various purposes:

– Airway Suction: Vacuum pumps assist in airway suctioning to clear secretions or obstructions from the patient’s airway during anesthesia or emergency situations.

– Evacuation of Gases: Vacuum pumps aid in removing exhaled gases from the patient’s breathing circuit, ensuring the delivery of fresh gas mixtures and maintaining appropriate anesthesia levels.

4. Laboratory Equipment:

Vacuum pumps are essential components in various medical laboratory equipment:

– Vacuum Ovens: Vacuum pumps are used in vacuum drying ovens, which are utilized for controlled drying or heat treatment of sensitive materials, samples, or laboratory glassware.

– Centrifugal Concentrators: Vacuum pumps are employed in centrifugal concentrators to facilitate the concentration or dehydration of biological samples, such as DNA, proteins, or viruses.

– Freeze Dryers: Vacuum pumps play a vital role in freeze-drying processes, where samples are frozen and then subjected to vacuum conditions to remove water via sublimation, preserving the sample’s structure and integrity.

5. Medical Suction Devices:

Vacuum pumps are utilized in standalone medical suction devices, commonly found in hospitals, clinics, and emergency settings. These devices create suction required for various medical procedures, including:

– Suctioning of Respiratory Secretions: Vacuum pumps assist in removing respiratory secretions or excess fluids from the airways of patients who have difficulty coughing or clearing their airways effectively.

– Thoracic Drainage: Vacuum pumps are used in chest drainage systems to evacuate air or fluid from the pleural cavity, helping in the treatment of conditions such as pneumothorax or pleural effusion.

– Obstetrics and Gynecology: Vacuum pumps are employed in devices used for vacuum-assisted deliveries, such as vacuum extractors, to aid in the safe delivery of babies during childbirth.

6. Blood Collection and Processing:

Vacuum pumps are utilized in blood collection systems and blood processing equipment:

– Blood Collection Tubes: Vacuum pumps are responsible for creating the vacuum inside blood collection tubes, facilitating the collection of blood samples for diagnostic testing.

– Blood Separation and Centrifugation: In blood processing equipment, vacuum pumps assist in the separation of blood components, such as red blood cells, plasma, and platelets, for various medical procedures and treatments.

7. Medical Imaging:

Vacuum pumps are used in certain medical imaging techniques:

– Electron Microscopy: Electron microscopes, including scanning electron microscopes and transmission electron microscopes, require a vacuum environment for high-resolution imaging. Vacuum pumps are employed to maintain the necessary vacuum conditions within the microscope chambers.

These are just a few examples of the wide-ranging applications of vacuum pumps in the medical field. Their ability to create suction and controlled vacuum environments makes them indispensable in medical procedures, wound healing, laboratory processes, anesthesia, and various other medical applications.

China best Mini Pneumatic Diaphragm Pump Vacuum PP for Water Oil Lotion 1/4 Inch   with Best Sales China best Mini Pneumatic Diaphragm Pump Vacuum PP for Water Oil Lotion 1/4 Inch   with Best Sales
editor by CX 2023-09-28

Recent Posts